MATH 20D Spring 2023 Lecture 8.

More on Linear Independence, and General Solutions to 2nd order ODE's

Outline

(1) More on Linear Independence
(2) General Solutions to 2nd order ODE's

Announcements

- Mistake in Friday and Mondays lecture. The volume of water in the tank should have been computed as

$$
V(t)= \begin{cases}180, & 0 \leqslant t \leqslant 10 \\ 180-(t-10), & t>10\end{cases}
$$

See Zulip Lecture Q \& A stream for a detailed discussion.

Announcements

- Mistake in Friday and Mondays lecture. The volume of water in the tank should have been computed as

$$
V(t)= \begin{cases}180, & 0 \leqslant t \leqslant 10 \\ 180-(t-10), & t>10\end{cases}
$$

See Zulip Lecture Q \& A stream for a detailed discussion.

- Midterm 1 is approaching (next Wednesday WLH 2005 during lecture)

Announcements

- Mistake in Friday and Mondays lecture. The volume of water in the tank should have been computed as

$$
V(t)= \begin{cases}180, & 0 \leqslant t \leqslant 10 \\ 180-(t-10), & t>10\end{cases}
$$

See Zulip Lecture Q \& A stream for a detailed discussion.

- Midterm 1 is approaching (next Wednesday WLH 2005 during lecture)
- Homework 3 is posted, please use most recent version updated around 12:30pm today.

Announcements

- Mistake in Friday and Mondays lecture. The volume of water in the tank should have been computed as

$$
V(t)= \begin{cases}180, & 0 \leqslant t \leqslant 10 \\ 180-(t-10), & t>10\end{cases}
$$

See Zulip Lecture Q \& A stream for a detailed discussion.

- Midterm 1 is approaching (next Wednesday WLH 2005 during lecture)
- Homework 3 is posted, please use most recent version updated around 12:30pm today.
- Review Sheet will come out tomorrow with solutions posted over the weekend. Unfortunately I will not be able to release solutions to homework until the late due date elapses on the Saturday following the midterm.

Contents

(1) More on Linear Independence

(2) General Solutions to 2nd order ODE's

Revisiting Linear Independence

Definition

We say that functions $y_{1}, y_{2}: \mathbb{R} \rightarrow \mathbb{R}$ are linearly dependent if there exists a constant $\alpha \in \mathbb{R}$ such that

$$
y_{1}(t)=\alpha y_{2}(t)
$$

for all $t \in \mathbb{R}$. If not, we say that y_{1} and y_{2} are linearly independent

Revisiting Linear Independence

Definition

We say that functions $y_{1}, y_{2}: \mathbb{R} \rightarrow \mathbb{R}$ are linearly dependent if there exists a constant $\alpha \in \mathbb{R}$ such that

$$
y_{1}(t)=\alpha y_{2}(t)
$$

for all $t \in \mathbb{R}$. If not, we say that y_{1} and y_{2} are linearly independent

Lemma

Fix functions $y_{1}, y_{2}: \mathbb{R} \rightarrow \mathbb{R}$.

Revisiting Linear Independence

Definition

We say that functions $y_{1}, y_{2}: \mathbb{R} \rightarrow \mathbb{R}$ are linearly dependent if there exists a constant $\alpha \in \mathbb{R}$ such that

$$
y_{1}(t)=\alpha y_{2}(t)
$$

for all $t \in \mathbb{R}$. If not, we say that y_{1} and y_{2} are linearly independent

Lemma

Fix functions $y_{1}, y_{2}: \mathbb{R} \rightarrow \mathbb{R}$. If y_{1} and y_{2} are linearly dependent then

$$
P=\binom{y_{1}(0)}{y_{1}^{\prime}(0)} \quad \text { and } \quad Q=\binom{y_{2}(0)}{y_{2}^{\prime}(0)}
$$

represent vectors in \mathbb{R}^{2} lying on the same stright line.

Revisiting Linear Independence

Definition

We say that functions $y_{1}, y_{2}: \mathbb{R} \rightarrow \mathbb{R}$ are linearly dependent if there exists a constant $\alpha \in \mathbb{R}$ such that

$$
y_{1}(t)=\alpha y_{2}(t)
$$

for all $t \in \mathbb{R}$. If not, we say that y_{1} and y_{2} are linearly independent

Lemma

Fix functions $y_{1}, y_{2}: \mathbb{R} \rightarrow \mathbb{R}$. If y_{1} and y_{2} are linearly dependent then

$$
P=\binom{y_{1}(0)}{y_{1}^{\prime}(0)} \quad \text { and } \quad Q=\binom{y_{2}(0)}{y_{2}^{\prime}(0)}
$$

represent vectors in \mathbb{R}^{2} lying on the same stright line.

Example

Show that the following pairs of functions are linearly independent;
(a) $y_{1}(x)=\cos (x), y_{2}(x)=\sin (x)$

Revisiting Linear Independence

Definition

We say that functions $y_{1}, y_{2}: \mathbb{R} \rightarrow \mathbb{R}$ are linearly dependent if there exists a constant $\alpha \in \mathbb{R}$ such that

$$
y_{1}(t)=\alpha y_{2}(t)
$$

for all $t \in \mathbb{R}$. If not, we say that y_{1} and y_{2} are linearly independent

Lemma

Fix functions $y_{1}, y_{2}: \mathbb{R} \rightarrow \mathbb{R}$. If y_{1} and y_{2} are linearly dependent then

$$
P=\binom{y_{1}(0)}{y_{1}^{\prime}(0)} \quad \text { and } \quad Q=\binom{y_{2}(0)}{y_{2}^{\prime}(0)}
$$

represent vectors in \mathbb{R}^{2} lying on the same stright line.

Example

Show that the following pairs of functions are linearly independent;
(a) $y_{1}(x)=\cos (x), y_{2}(x)=\sin (x)$
(b) $y_{1}(x)=e^{r_{1} x}, y_{2}(x)=e^{r_{2} x}$ provided $r_{1} \neq r_{2}$.

Contents

(1) More on Linear Independence

(2) General Solutions to 2nd order ODE's

2nd Order ODEs

Theorem

Let $a \neq 0, b$, and c be constants and consider the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{1}
\end{equation*}
$$

2nd Order ODEs

Theorem

Let $a \neq 0, b$, and c be constants and consider the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{1}
\end{equation*}
$$

(a) Then (1) admits a pair of linearly independent solutions.

2nd Order ODEs

Theorem

Let $a \neq 0, b$, and c be constants and consider the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{1}
\end{equation*}
$$

(a) Then (1) admits a pair of linearly independent solutions.
(b) Suppose y_{1} and y_{2} are linearly independent solutions to (1). Then

$$
y: \mathbb{R} \rightarrow \mathbb{R}, \quad y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

is a general solution to (1).

2nd Order ODEs

Theorem

Let $a \neq 0, b$, and c be constants and consider the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{1}
\end{equation*}
$$

(a) Then (1) admits a pair of linearly independent solutions.
(b) Suppose y_{1} and y_{2} are linearly independent solutions to (1). Then

$$
y: \mathbb{R} \rightarrow \mathbb{R}, \quad y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

is a general solution to (1).
If $b^{2}-4 a c>0$,

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

then $y_{1}(t)=e^{r_{1} t}$ and $y_{2}(t)=e^{r_{2} t}$ are linearly independent solution to (1).

2nd Order ODEs

Theorem

Let $a \neq 0, b$, and c be constants and consider the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{1}
\end{equation*}
$$

(a) Then (1) admits a pair of linearly independent solutions.
(b) Suppose y_{1} and y_{2} are linearly independent solutions to (1). Then

$$
y: \mathbb{R} \rightarrow \mathbb{R}, \quad y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

is a general solution to (1).
If $b^{2}-4 a c>0$,

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

then $y_{1}(t)=e^{r_{1} t}$ and $y_{2}(t)=e^{r_{2} t}$ are linearly independent solution to (1). Hence if $b^{2}-4 a c>0$ then (1) admits a general solution of the form

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t} .
$$

An Example with Distinct Real Roots

Example

Consider the ODE

$$
\begin{equation*}
y^{\prime \prime}+6 y^{\prime}+3 y=0 \tag{2}
\end{equation*}
$$

- Determine constants r_{1} and r_{2} such that the ODE above admits a general solution of the form $y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$.
- Solve (2) subject to the initial conditions $y(0)=0$ and $y^{\prime}(0)=1$.

An Example with Distinct Real Roots

Example

Consider the ODE

$$
\begin{equation*}
y^{\prime \prime}+6 y^{\prime}+3 y=0 \tag{2}
\end{equation*}
$$

- Determine constants r_{1} and r_{2} such that the ODE above admits a general solution of the form $y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$.
- Solve (2) subject to the initial conditions $y(0)=0$ and $y^{\prime}(0)=1$.
- The auxiliary equation $r^{2}+6 r+3=0$ has distinct real roots

$$
r_{1}=-3+\sqrt{6} \quad \text { and } \quad r_{2}=-3-\sqrt{6} .
$$

Therefore $y(t)=C_{1} e^{(-3+\sqrt{6}) t}+C_{2} e^{(-3-\sqrt{6}) t}$ is a general solution.

An Example with Distinct Real Roots

Example

Consider the ODE

$$
\begin{equation*}
y^{\prime \prime}+6 y^{\prime}+3 y=0 \tag{2}
\end{equation*}
$$

- Determine constants r_{1} and r_{2} such that the ODE above admits a general solution of the form $y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$.
- Solve (2) subject to the initial conditions $y(0)=0$ and $y^{\prime}(0)=1$.
- The auxiliary equation $r^{2}+6 r+3=0$ has distinct real roots

$$
r_{1}=-3+\sqrt{6} \quad \text { and } \quad r_{2}=-3-\sqrt{6} .
$$

Therefore $y(t)=C_{1} e^{(-3+\sqrt{6}) t}+C_{2} e^{(-3-\sqrt{6}) t}$ is a general solution.

- Substituting in $y(0)=0$ and $y^{\prime}(0)=1$ gives a system of linear equations

$$
C_{1}+C_{2}=0 \quad \text { and } \quad(-3+\sqrt{6}) C_{1}+(-3-\sqrt{6}) C_{2}=1
$$

An Example with Distinct Real Roots

Example

Consider the ODE

$$
\begin{equation*}
y^{\prime \prime}+6 y^{\prime}+3 y=0 \tag{2}
\end{equation*}
$$

- Determine constants r_{1} and r_{2} such that the ODE above admits a general solution of the form $y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$.
- Solve (2) subject to the initial conditions $y(0)=0$ and $y^{\prime}(0)=1$.
- The auxiliary equation $r^{2}+6 r+3=0$ has distinct real roots

$$
r_{1}=-3+\sqrt{6} \quad \text { and } \quad r_{2}=-3-\sqrt{6}
$$

Therefore $y(t)=C_{1} e^{(-3+\sqrt{6}) t}+C_{2} e^{(-3-\sqrt{6}) t}$ is a general solution.

- Substituting in $y(0)=0$ and $y^{\prime}(0)=1$ gives a system of linear equations

$$
C_{1}+C_{2}=0 \quad \text { and } \quad(-3+\sqrt{6}) C_{1}+(-3-\sqrt{6}) C_{2}=1
$$

Solving by elimination (or substitution) $C_{1}=\sqrt{6} / 12$ and $C_{2}=-\sqrt{6} / 12$.

An Example with Distinct Real Roots

Example

Consider the ODE

$$
\begin{equation*}
y^{\prime \prime}+6 y^{\prime}+3 y=0 \tag{2}
\end{equation*}
$$

- Determine constants r_{1} and r_{2} such that the ODE above admits a general solution of the form $y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$.
- Solve (2) subject to the initial conditions $y(0)=0$ and $y^{\prime}(0)=1$.
- The auxiliary equation $r^{2}+6 r+3=0$ has distinct real roots

$$
r_{1}=-3+\sqrt{6} \quad \text { and } \quad r_{2}=-3-\sqrt{6}
$$

Therefore $y(t)=C_{1} e^{(-3+\sqrt{6}) t}+C_{2} e^{(-3-\sqrt{6}) t}$ is a general solution.

- Substituting in $y(0)=0$ and $y^{\prime}(0)=1$ gives a system of linear equations

$$
C_{1}+C_{2}=0 \quad \text { and } \quad(-3+\sqrt{6}) C_{1}+(-3-\sqrt{6}) C_{2}=1
$$

Solving by elimination (or substitution) $C_{1}=\sqrt{6} / 12$ and $C_{2}=-\sqrt{6} / 12$.

- Obtain solution $y(t)=\frac{\sqrt{6}}{12}\left(e^{(-3+\sqrt{6}) t}-e^{(-3-\sqrt{6}) t}\right)$.

The Case of Repeated Real Root

Question

How do we write a general solution to $a y^{\prime \prime}(t)+b y^{\prime}(t)+c=0$ when $b^{2}-4 a c=0$?

The Case of Repeated Real Root

Question

How do we write a general solution to $a y^{\prime \prime}(t)+b y^{\prime}(t)+c=0$ when $b^{2}-4 a c=0$?

- In this case $a r^{2}+b r+c=0$ only one solution given by $r=-b / 2 a$.

The Case of Repeated Real Root

Question

How do we write a general solution to $a y^{\prime \prime}(t)+b y^{\prime}(t)+c=0$ when $b^{2}-4 a c=0$?

- In this case $a r^{2}+b r+c=0$ only one solution given by $r=-b / 2 a$.

Theorem

Suppose $b^{2}-4 a c=0$ and let $r=-b / 2 a$. Then

$$
y_{1}(t)=e^{r t} \quad \text { and } \quad y_{2}(t)=t e^{r t}
$$

are linearly independent solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$.

The Case of Repeated Real Root

Question

How do we write a general solution to $a y^{\prime \prime}(t)+b y^{\prime}(t)+c=0$ when $b^{2}-4 a c=0$?

- In this case $a r^{2}+b r+c=0$ only one solution given by $r=-b / 2 a$.

Theorem

Suppose $b^{2}-4 a c=0$ and let $r=-b / 2 a$. Then

$$
y_{1}(t)=e^{r t} \quad \text { and } \quad y_{2}(t)=t e^{r t}
$$

are linearly independent solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Example

(a) Write down a general solutions to the ODE $y^{\prime \prime}-4 y^{\prime}+4 y=0$.
(b) Solve the IVP

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0 .
$$

The Case of Conjugate Complex Roots I

- Suppose $b^{2}-4 a c<0$. Then $a r^{2}+b r+c=0$ has solutions

$$
r_{1}=\frac{1}{2 a}\left(-b+i \sqrt{4 a c-b^{2}}\right) \quad \text { and } \quad r_{2}=\frac{1}{2 a}\left(-b-i \sqrt{4 a c-b^{2}}\right)
$$

The Case of Conjugate Complex Roots I

- Suppose $b^{2}-4 a c<0$. Then $a r^{2}+b r+c=0$ has solutions

$$
r_{1}=\frac{1}{2 a}\left(-b+i \sqrt{4 a c-b^{2}}\right) \quad \text { and } \quad r_{2}=\frac{1}{2 a}\left(-b-i \sqrt{4 a c-b^{2}}\right)
$$

Theorem

Suppose $b^{2}-4 a c<0$, let $\alpha=-b / 2 a$ and $\beta=\sqrt{4 a c-b^{2}} / 2 a$. Then

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t) \quad \text { and } \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

are linearly independent solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$.

The Case of Conjugate Complex Roots I

- Suppose $b^{2}-4 a c<0$. Then $a r^{2}+b r+c=0$ has solutions

$$
r_{1}=\frac{1}{2 a}\left(-b+i \sqrt{4 a c-b^{2}}\right) \quad \text { and } \quad r_{2}=\frac{1}{2 a}\left(-b-i \sqrt{4 a c-b^{2}}\right)
$$

Theorem

Suppose $b^{2}-4 a c<0$, let $\alpha=-b / 2 a$ and $\beta=\sqrt{4 a c-b^{2}} / 2 a$. Then

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t) \quad \text { and } \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

are linearly independent solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Example

(a) Write down a general solution to the ODE $y^{\prime \prime}+2 y^{\prime}+4 y=0$.
(b) Solve the IVP

$$
y^{\prime \prime}+2 y^{\prime}+4 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1 .
$$

The Case of Conjugate Complex Roots II

- When $b^{2}-4 a c<0$ the solutions of the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 . \tag{3}
\end{equation*}
$$

have oscillatory or sinosoidal nature.

The Case of Conjugate Complex Roots II

- When $b^{2}-4 a c<0$ the solutions of the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{3}
\end{equation*}
$$

have oscillatory or sinosoidal nature.

Theorem

Suppose $b^{2}-4 a c<0$ and consider the general solution to the ODE (3) given by

$$
\begin{equation*}
y(t)=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t) \tag{4}
\end{equation*}
$$

where $\alpha \pm i \beta$ are the roots to the equation $a r^{2}+b r+c=0$.

The Case of Conjugate Complex Roots II

- When $b^{2}-4 a c<0$ the solutions of the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{3}
\end{equation*}
$$

have oscillatory or sinosoidal nature.

Theorem

Suppose $b^{2}-4 a c<0$ and consider the general solution to the ODE (3) given by

$$
\begin{equation*}
y(t)=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t) \tag{4}
\end{equation*}
$$

where $\alpha \pm i \beta$ are the roots to the equation $a r^{2}+b r+c=0$. Then (4) can be rewritten in the form

$$
y(t)=A e^{\alpha t} \sin (\beta t+\phi)
$$

where $A=\sqrt{C_{1}^{2}+C_{2}^{2}}$ and $\phi \in[0,2 \pi)$ satisfies $C_{1}=A \sin (\phi)$ and $C_{2}=A \cos (\phi)$.

The Case of Conjugate Complex Roots II

- When $b^{2}-4 a c<0$ the solutions of the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 . \tag{3}
\end{equation*}
$$

have oscillatory or sinosoidal nature.

Theorem

Suppose $b^{2}-4 a c<0$ and consider the general solution to the ODE (3) given by

$$
\begin{equation*}
y(t)=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t) \tag{4}
\end{equation*}
$$

where $\alpha \pm i \beta$ are the roots to the equation $a r^{2}+b r+c=0$. Then (4) can be rewritten in the form

$$
y(t)=A e^{\alpha t} \sin (\beta t+\phi)
$$

where $A=\sqrt{C_{1}^{2}+C_{2}^{2}}$ and $\phi \in[0,2 \pi)$ satisfies $C_{1}=A \sin (\phi)$ and $C_{2}=A \cos (\phi)$.

Example

(a) Solve the IVP $\frac{1}{8} y^{\prime \prime}(t)+16 y(t)=0, y(0)=1 / 2, y^{\prime}(0)=-\sqrt{2}$.
(b) Rewrite your solution to (a) in the form $y(t)=A e^{\alpha t} \sin (\beta t+\phi)$.

