MATH 20D Spring 2023 Lecture 8. More on Linear Independence, and General Solutions to 2nd order ODE's

Outline

э

 Mistake in Friday and Mondays lecture. The volume of water in the tank should have been computed as

$$V(t) = \begin{cases} 180, & 0 \le t \le 10\\ 180 - (t - 10), & t > 10. \end{cases}$$

See Zulip Lecture Q & A stream for a detailed discussion.

 Mistake in Friday and Mondays lecture. The volume of water in the tank should have been computed as

$$V(t) = \begin{cases} 180, & 0 \le t \le 10\\ 180 - (t - 10), & t > 10. \end{cases}$$

See Zulip Lecture Q & A stream for a detailed discussion.

• Midterm 1 is approaching (next Wednesday WLH 2005 during lecture)

 Mistake in Friday and Mondays lecture. The volume of water in the tank should have been computed as

$$V(t) = \begin{cases} 180, & 0 \le t \le 10\\ 180 - (t - 10), & t > 10. \end{cases}$$

See Zulip Lecture Q & A stream for a detailed discussion.

- Midterm 1 is approaching (next Wednesday WLH 2005 during lecture)
- Homework 3 is posted, please use most recent version updated around 12:30pm today.

 Mistake in Friday and Mondays lecture. The volume of water in the tank should have been computed as

$$V(t) = \begin{cases} 180, & 0 \le t \le 10\\ 180 - (t - 10), & t > 10. \end{cases}$$

See Zulip Lecture Q & A stream for a detailed discussion.

- Midterm 1 is approaching (next Wednesday WLH 2005 during lecture)
- Homework 3 is posted, please use most recent version updated around 12:30pm today.
- Review Sheet will come out tomorrow with solutions posted over the weekend. Unfortunately I will not be able to release solutions to homework until the late due date elapses on the Saturday following the midterm.

・ロト ・ 同ト ・ ヨト ・ ヨト

Contents

2 General Solutions to 2nd order ODE's

Definition

We say that functions $y_1, y_2 : \mathbb{R} \to \mathbb{R}$ are **linearly dependent** if there exists a constant $\alpha \in \mathbb{R}$ such that

$$y_1(t) = \alpha y_2(t)$$

for all $t \in \mathbb{R}$. If not, we say that y_1 and y_2 are **linearly independent**

글 🕨 🖌 글 🕨

Definition

We say that functions $y_1, y_2 : \mathbb{R} \to \mathbb{R}$ are **linearly dependent** if there exists a constant $\alpha \in \mathbb{R}$ such that

$$y_1(t) = \alpha y_2(t)$$

for all $t \in \mathbb{R}$. If not, we say that y_1 and y_2 are **linearly independent**

Lemma

Fix functions $y_1, y_2 \colon \mathbb{R} \to \mathbb{R}$.

3

(日)

Definition

We say that functions $y_1, y_2 : \mathbb{R} \to \mathbb{R}$ are **linearly dependent** if there exists a constant $\alpha \in \mathbb{R}$ such that

$$y_1(t) = \alpha y_2(t)$$

for all $t \in \mathbb{R}$. If not, we say that y_1 and y_2 are **linearly independent**

Lemma

Fix functions $y_1, y_2 : \mathbb{R} \to \mathbb{R}$. If y_1 and y_2 are linearly dependent then

$$P = \begin{pmatrix} y_1(0) \\ y'_1(0) \end{pmatrix} \quad \text{and} \quad Q = \begin{pmatrix} y_2(0) \\ y'_2(0) \end{pmatrix}$$

represent vectors in \mathbb{R}^2 lying on the same stright line.

イロト (得) (ヨ) (ヨ) - ヨ

Definition

We say that functions $y_1, y_2 : \mathbb{R} \to \mathbb{R}$ are **linearly dependent** if there exists a constant $\alpha \in \mathbb{R}$ such that

$$y_1(t) = \alpha y_2(t)$$

for all $t \in \mathbb{R}$. If not, we say that y_1 and y_2 are **linearly independent**

Lemma

Fix functions $y_1, y_2 : \mathbb{R} \to \mathbb{R}$. If y_1 and y_2 are linearly dependent then

$$P = \begin{pmatrix} y_1(0) \\ y'_1(0) \end{pmatrix} \quad \text{and} \quad Q = \begin{pmatrix} y_2(0) \\ y'_2(0) \end{pmatrix}$$

represent vectors in \mathbb{R}^2 lying on the same stright line.

Example

Show that the following pairs of functions are linearly independent; (a) $y_1(x) = \cos(x), y_2(x) = \sin(x)$

Definition

We say that functions $y_1, y_2 : \mathbb{R} \to \mathbb{R}$ are **linearly dependent** if there exists a constant $\alpha \in \mathbb{R}$ such that

$$y_1(t) = \alpha y_2(t)$$

for all $t \in \mathbb{R}$. If not, we say that y_1 and y_2 are **linearly independent**

Lemma

Fix functions $y_1, y_2 : \mathbb{R} \to \mathbb{R}$. If y_1 and y_2 are linearly dependent then

$$P = \begin{pmatrix} y_1(0) \\ y'_1(0) \end{pmatrix} \quad \text{and} \quad Q = \begin{pmatrix} y_2(0) \\ y'_2(0) \end{pmatrix}$$

represent vectors in \mathbb{R}^2 lying on the same stright line.

Example

Show that the following pairs of functions are linearly independent;

- (a) $y_1(x) = \cos(x), y_2(x) = \sin(x)$
- (b) $y_1(x) = e^{r_1 x}$, $y_2(x) = e^{r_2 x}$ provided $r_1 \neq r_2$.

Contents

э

Theorem

Let $a \neq 0, b$, and c be constants and consider the ODE

$$ay''(t) + by'(t) + cy(t) = 0$$

12

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Theorem

Let $a \neq 0$, b, and c be constants and consider the ODE

$$ay''(t) + by'(t) + cy(t) = 0$$

(a) Then (1) admits a pair of linearly independent solutions.

글 🖌 🔺 글 🕨

Theorem

Let $a \neq 0, b$, and c be constants and consider the ODE

$$ay''(t) + by'(t) + cy(t) = 0$$

(a) Then (1) admits a pair of linearly independent solutions.

(b) Suppose y_1 and y_2 are linearly independent solutions to (1). Then

$$y: \mathbb{R} \to \mathbb{R}, \quad y(t) = C_1 y_1(t) + C_2 y_2(t)$$

is a general solution to (1).

< E

Theorem

Let $a \neq 0, b$, and c be constants and consider the ODE

$$ay''(t) + by'(t) + cy(t) = 0$$

(a) Then (1) admits a pair of linearly independent solutions.

(b) Suppose y_1 and y_2 are **linearly independent** solutions to (1). Then

$$y: \mathbb{R} \to \mathbb{R}, \quad y(t) = C_1 y_1(t) + C_2 y_2(t)$$

is a general solution to (1).

If $b^2 - 4ac > 0$,

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

then $y_1(t) = e^{r_1 t}$ and $y_2(t) = e^{r_2 t}$ are linearly independent solution to (1).

イロト イボト イヨト イヨト

Theorem

Let $a \neq 0, b$, and c be constants and consider the ODE

$$ay''(t) + by'(t) + cy(t) = 0$$

(a) Then (1) admits a pair of linearly independent solutions.

(b) Suppose y_1 and y_2 are linearly independent solutions to (1). Then

$$y: \mathbb{R} \to \mathbb{R}, \quad y(t) = C_1 y_1(t) + C_2 y_2(t)$$

is a general solution to (1).

If $b^2 - 4ac > 0$,

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

then $y_1(t) = e^{r_1 t}$ and $y_2(t) = e^{r_2 t}$ are linearly independent solution to (1). Hence if $b^2 - 4ac > 0$ then (1) admits a general solution of the form

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}.$$

・ロト ・同ト ・ヨト ・ヨト

Example

Consider the ODE

$$y'' + 6y' + 3y = 0 \tag{2}$$

- Determine constants r_1 and r_2 such that the ODE above admits a general solution of the form $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$.
- Solve (2) subject to the initial conditions y(0) = 0 and y'(0) = 1.

글 🕨 🖌 글 🕨

Example

Consider the ODE

$$y'' + 6y' + 3y = 0 \tag{2}$$

- Determine constants r_1 and r_2 such that the ODE above admits a general solution of the form $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$.
- Solve (2) subject to the initial conditions y(0) = 0 and y'(0) = 1.
- The **auxiliary equation** $r^2 + 6r + 3 = 0$ has distinct real roots

$$r_1 = -3 + \sqrt{6}$$
 and $r_2 = -3 - \sqrt{6}$.

Therefore $y(t) = C_1 e^{(-3+\sqrt{6})t} + C_2 e^{(-3-\sqrt{6})t}$ is a general solution.

イロト (得) (ヨ) (ヨ) - ヨ

Example

Consider the ODE

$$y'' + 6y' + 3y = 0 (2)$$

- Determine constants r_1 and r_2 such that the ODE above admits a general solution of the form $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$.
- Solve (2) subject to the initial conditions y(0) = 0 and y'(0) = 1.
- The **auxiliary equation** $r^2 + 6r + 3 = 0$ has distinct real roots

$$r_1 = -3 + \sqrt{6}$$
 and $r_2 = -3 - \sqrt{6}$.

Therefore $y(t) = C_1 e^{(-3+\sqrt{6})t} + C_2 e^{(-3-\sqrt{6})t}$ is a general solution.

• Substituting in y(0) = 0 and y'(0) = 1 gives a system of linear equations

$$C_1 + C_2 = 0$$
 and $(-3 + \sqrt{6})C_1 + (-3 - \sqrt{6})C_2 = 1$

イロト イポト イヨト イヨト 三日

Example

Consider the ODE

$$y'' + 6y' + 3y = 0 (2)$$

- Determine constants r_1 and r_2 such that the ODE above admits a general solution of the form $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$.
- Solve (2) subject to the initial conditions y(0) = 0 and y'(0) = 1.
- The **auxiliary equation** $r^2 + 6r + 3 = 0$ has distinct real roots

$$r_1 = -3 + \sqrt{6}$$
 and $r_2 = -3 - \sqrt{6}$.

Therefore $y(t) = C_1 e^{(-3+\sqrt{6})t} + C_2 e^{(-3-\sqrt{6})t}$ is a general solution.

• Substituting in y(0) = 0 and y'(0) = 1 gives a system of linear equations

$$C_1 + C_2 = 0$$
 and $(-3 + \sqrt{6})C_1 + (-3 - \sqrt{6})C_2 = 1$

Solving by elimination (or substitution) $C_1 = \sqrt{6}/12$ and $C_2 = -\sqrt{6}/12$.

イロト イポト イヨト イヨト 三日

Example

Consider the ODE

$$y'' + 6y' + 3y = 0 (2)$$

- Determine constants r_1 and r_2 such that the ODE above admits a general solution of the form $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$.
- Solve (2) subject to the initial conditions y(0) = 0 and y'(0) = 1.
- The **auxiliary equation** $r^2 + 6r + 3 = 0$ has distinct real roots

$$r_1 = -3 + \sqrt{6}$$
 and $r_2 = -3 - \sqrt{6}$.

Therefore $y(t) = C_1 e^{(-3+\sqrt{6})t} + C_2 e^{(-3-\sqrt{6})t}$ is a general solution.

• Substituting in y(0) = 0 and y'(0) = 1 gives a system of linear equations

$$C_1 + C_2 = 0$$
 and $(-3 + \sqrt{6})C_1 + (-3 - \sqrt{6})C_2 = 1$

Solving by elimination (or substitution) $C_1 = \sqrt{6}/12$ and $C_2 = -\sqrt{6}/12$.

• Obtain solution $y(t) = \frac{\sqrt{6}}{12} \left(e^{(-3+\sqrt{6})t} - e^{(-3-\sqrt{6})t} \right)$

Question

How do we write a general solution to ay''(t) + by'(t) + c = 0 when $b^2 - 4ac = 0$?

- 3

∃ ► < ∃ ►</p>

Question

How do we write a general solution to ay''(t) + by'(t) + c = 0 when $b^2 - 4ac = 0$?

• In this case $ar^2 + br + c = 0$ only one solution given by r = -b/2a.

・ロト ・同ト ・ヨト ・ヨト

- 3

Question

How do we write a general solution to ay''(t) + by'(t) + c = 0 when $b^2 - 4ac = 0$?

• In this case $ar^2 + br + c = 0$ only one solution given by r = -b/2a.

Theorem

Suppose $b^2 - 4ac = 0$ and let r = -b/2a. Then

$$y_1(t) = e^{rt}$$
 and $y_2(t) = te^{rt}$

are linearly independent solution to ay'' + by' + cy = 0.

イロト 不得 トイヨト イヨト 二日

Question

How do we write a general solution to ay''(t) + by'(t) + c = 0 when $b^2 - 4ac = 0$?

• In this case $ar^2 + br + c = 0$ only one solution given by r = -b/2a.

Theorem

Suppose
$$b^2 - 4ac = 0$$
 and let $r = -b/2a$. Then

$$y_1(t) = e^{rt}$$
 and $y_2(t) = te^{rt}$

are linearly independent solution to ay'' + by' + cy = 0.

Example

(a) Write down a general solutions to the ODE y'' - 4y' + 4y = 0.

(b) Solve the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

The Case of Conjugate Complex Roots I

• Suppose $b^2 - 4ac < 0$. Then $ar^2 + br + c = 0$ has solutions

$$r_1 = \frac{1}{2a}(-b + i\sqrt{4ac - b^2})$$
 and $r_2 = \frac{1}{2a}(-b - i\sqrt{4ac - b^2})$

The Case of Conjugate Complex Roots I

• Suppose $b^2 - 4ac < 0$. Then $ar^2 + br + c = 0$ has solutions

$$r_1 = \frac{1}{2a}(-b + i\sqrt{4ac - b^2})$$
 and $r_2 = \frac{1}{2a}(-b - i\sqrt{4ac - b^2})$

Theorem

Suppose $b^2 - 4ac < 0$, let $\alpha = -b/2a$ and $\beta = \sqrt{4ac - b^2}/2a$. Then

$$y_1(t) = e^{\alpha t} \cos(\beta t)$$
 and $y_2(t) = e^{\alpha t} \sin(\beta t)$

are linearly independent solution to ay'' + by' + cy = 0.

A (日) × (日) ×

The Case of Conjugate Complex Roots I

• Suppose $b^2 - 4ac < 0$. Then $ar^2 + br + c = 0$ has solutions

$$r_1 = \frac{1}{2a}(-b + i\sqrt{4ac - b^2})$$
 and $r_2 = \frac{1}{2a}(-b - i\sqrt{4ac - b^2})$

Theorem

Suppose $b^2 - 4ac < 0$, let $\alpha = -b/2a$ and $\beta = \sqrt{4ac - b^2}/2a$. Then

$$y_1(t) = e^{\alpha t} \cos(\beta t)$$
 and $y_2(t) = e^{\alpha t} \sin(\beta t)$

are linearly independent solution to ay'' + by' + cy = 0.

Example

- (a) Write down a general solution to the ODE y'' + 2y' + 4y = 0.
- (b) Solve the IVP

$$y'' + 2y' + 4y = 0,$$
 $y(0) = 0,$ $y'(0) = 1.$

The Case of Conjugate Complex Roots II

• When $b^2 - 4ac < 0$ the solutions of the ODE

$$ay''(t) + by'(t) + cy(t) = 0.$$
 (3)

< 口 > < 同 >

have oscillatory or sinosoidal nature.

The Case of Conjugate Complex Roots II

• When $b^2 - 4ac < 0$ the solutions of the ODE

$$ay''(t) + by'(t) + cy(t) = 0.$$
 (3)

have oscillatory or sinosoidal nature.

Theorem

Suppose $b^2 - 4ac < 0$ and consider the general solution to the ODE (3) given by

$$\mathbf{y}(t) = C_1 e^{\alpha t} \cos(\beta t) + C_2 e^{\alpha t} \sin(\beta t).$$
(4)

where $\alpha \pm i\beta$ are the roots to the equation $ar^2 + br + c = 0$.

• When $b^2 - 4ac < 0$ the solutions of the ODE

$$ay''(t) + by'(t) + cy(t) = 0.$$
 (3)

have oscillatory or sinosoidal nature.

Theorem

Suppose $b^2 - 4ac < 0$ and consider the general solution to the ODE (3) given by

$$y(t) = C_1 e^{\alpha t} \cos(\beta t) + C_2 e^{\alpha t} \sin(\beta t).$$
(4)

where $\alpha \pm i\beta$ are the roots to the equation $ar^2 + br + c = 0$. Then (4) can be rewritten in the form

$$y(t) = Ae^{\alpha t}\sin(\beta t + \phi)$$

where $A = \sqrt{C_1^2 + C_2^2}$ and $\phi \in [0, 2\pi)$ satisfies $C_1 = A \sin(\phi)$ and $C_2 = A \cos(\phi)$.

・ロト (得) (ヨト (ヨト) ヨ

• When $b^2 - 4ac < 0$ the solutions of the ODE

$$ay''(t) + by'(t) + cy(t) = 0.$$
 (3)

have oscillatory or sinosoidal nature.

Theorem

Suppose $b^2 - 4ac < 0$ and consider the general solution to the ODE (3) given by

$$y(t) = C_1 e^{\alpha t} \cos(\beta t) + C_2 e^{\alpha t} \sin(\beta t).$$
(4)

where $\alpha \pm i\beta$ are the roots to the equation $ar^2 + br + c = 0$. Then (4) can be rewritten in the form

$$y(t) = Ae^{\alpha t}\sin(\beta t + \phi)$$

where $A = \sqrt{C_1^2 + C_2^2}$ and $\phi \in [0, 2\pi)$ satisfies $C_1 = A \sin(\phi)$ and $C_2 = A \cos(\phi)$.

Example

- (a) Solve the IVP $\frac{1}{8}y''(t) + 16y(t) = 0$, y(0) = 1/2, $y'(0) = -\sqrt{2}$.
- (b) Rewrite your solution to (a) in the form $y(t) = Ae^{\alpha t} \sin(\beta t + \phi)$.